Collocation Solutions to Pseudodifferential Equations of Negative Orders on the Sphere Using Spherical Radial Basis Functions
نویسندگان
چکیده
Abstract. Spherical radial basis functions are used to define approximate solutions to pseudodifferential equations of negative orders on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the collocation method. A salient feature of our approach in this paper is a simple error analysis for the collocation method using the same argument as that for the Galerkin method.
منابع مشابه
Pseudodifferential equations on the sphere with radial basis functions: Error analysis
Spherical radial basis functions are used to define approximate solutions to strongly elliptic and elliptic pseudodifferential equations on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the Galerkin and collocation methods. A salient feature of the paper is a unified theory for error analysis of both approximation methods.
متن کاملStrongly elliptic pseudodifferential equations on the sphere with radial basis functions
Spherical radial basis functions are used to define approximate solutions to strongly elliptic pseudodifferential equations on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the Galerkin and collocation methods. A salient feature of the paper is a unified theory for error analysis of both approximation methods.
متن کاملPreconditioners for pseudodifferential equations on the sphere with radial basis functions
In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the i...
متن کاملAnalysis of Rectangular Stiffened Plates Based on FSDT and Meshless Collocation Method
In this paper, bending analysis of concentric and eccentric beam stiffened square and rectangular plate using the meshless collocation method has been investigated. For detecting the governing equations of plate and beams, Mindlin plate theory and Timoshenko beam theory have been used, respectively, with the stiffness matrices of the plate and the beams obtained separately. The stiffness matric...
متن کاملNumerical Solution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions
This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008